Biomass pretreatment with distillable ionic liquids for an effective recycling and recovery approach
Publication Type
Date Published
Authors
DOI
Abstract
Ionic liquid (IL) pretreatment methods show incredible promise for the efficient conversion of lignocellulosic feedstocks to fuels and chemicals. Given their low vapor pressures, distillation-based methods of extracting ionic liquids out of biomass post-pretreatment have historically been ignored in favor of alternative methods. We demonstrate a process to distill four acetate-based ionic liquids ([EthA][OAc], [PropA][OAc], [MAEthA][OAc], and [DMAEthA][OAc]) at low pressure and high purity that overcome some disadvantages of “water washing” and “one pot” recovery methods. Out of four tested ILs, ethanolamine acetate ([EthA][OAc]) is shown to have the most agreeable conversion metrics for commercial bioconversion processes achieving 73.6 % and 51.4 % of theoretical glucose and xylose yields respectively and >85 % recovery rates. Our process metrics are factored into a techno-economic analysis where [EthA][OAc] distillation is compared to other recovery methods as well as ethanolamine pretreatment at both milliliter and liter scales. Although our TEA shows [EthA][OAc] distillation underperforming against other processes, we show a step-by-step avenue to reduce sugar production cost below the wholesale dextrose price at scale.