A novel approach for large-scale wind energy potential assessment
Publication Type
Date Published
Authors
DOI
Abstract
Increasing wind energy generation is central to grid decarbonization, yet methods to estimate wind energy potential are not standardized, leading to inconsistencies and even skewed results. This study aims to improve the fidelity of wind energy potential estimates through an approach that integrates geospatial analysis and machine learning (i.e., Gaussian process regression). We demonstrate this approach to assess the spatial distribution of wind energy capacity potential in the Contiguous United States (CONUS). We find that the capacity-based power density ranges from 1.70 MW/km2 (25th percentile) to 3.88 MW/km2 (75th percentile) for existing wind farms in the CONUS. The value is lower in agricultural areas (2.73 0.02 MW/km2, mean 95 % confidence interval) and higher in other land cover types (3.30 0.03 MW/km2). Notably, advancements in turbine manufacturing could reduce power density in areas with lower wind speeds by adopting low specific-power turbines, but improve power density in areas with higher wind speeds (>8.35 m/s at 120m above the ground), highlighting opportunities for repowering existing wind farms. Wind energy potential is shaped by wind resource quality and is regionally characterized by land cover and physical conditions, revealing significant capacity potential in the Great Plains and Upper Texas. The results indicate that areas previously identified as hot spots using existing approaches (e.g., the west of the Rocky Mountains) may have a limited capacity potential due to low wind resource quality. Improvements in methodology and capacity potential estimates in this study could serve as a new basis for future energy systems analysis and planning.