A novel approach for large-scale wind energy potential assessment

Publication Type

Journal Article

Date Published

04/2025

Authors

DOI

Abstract

Increasing wind energy generation is central to grid decarbonization, yet methods to estimate wind energy potential are not standardized, leading to inconsistencies and even skewed results. This study aims to improve the fidelity of wind energy potential estimates through an approach that integrates geospatial analysis and machine learning (i.e., Gaussian process regression). We demonstrate this approach to assess the spatial distribution of wind energy capacity potential in the Contiguous United States (CONUS). We find that the capacity-based power density ranges from 1.70 MW/km2 (25th percentile) to 3.88 MW/km2 (75th percentile) for existing wind farms in the CONUS. The value is lower in agricultural areas (2.73 ± 0.02 MW/km2, mean ± 95 % confidence interval) and higher in other land cover types (3.30± 0.03 MW/km2). Notably, advancements in turbine manufacturing could reduce power density in areas with lower wind speeds by adopting low specific-power turbines, but improve power density in areas with higher wind speeds (>8.35 m/s at 120m above the ground), highlighting opportunities for repowering existing wind farms. Wind energy potential is shaped by wind resource quality and is regionally characterized by land cover and physical conditions, revealing significant capacity potential in the Great Plains and Upper Texas. The results indicate that areas previously identified as hot spots using existing approaches (e.g., the west of the Rocky Mountains) may have a limited capacity potential due to low wind resource quality. Improvements in methodology and capacity potential estimates in this study could serve as a new basis for future energy systems analysis and planning.

Journal

Renewable and Sustainable Energy Reviews

Volume

211

Year of Publication

2025

URL

ISSN

1364-0321

Organization

Research Areas