Seasonal versus episodic performance evaluation for an Eulerian photochemical air quality model

Publication Type

Journal Article

Date Published

05/2010

Authors

DOI

Abstract

This study presents detailed evaluation of the seasonal and episodic performance of the Community Multiscale Air Quality (CMAQ) modeling system applied to simulate air quality at a fine grid spacing (4 km horizontal resolution) in central California, where ozone air pollution problems are severe. A rich aerometric database collected during the summer 2000 Central California Ozone Study (CCOS) is used to prepare model inputs and to evaluate meteorological simulations and chemical outputs. We examine both temporal and spatial behaviors of ozone predictions. We highlight synoptically driven high-ozone events (exemplified by the four intensive operating periods (IOPs)) for evaluating both meteorological inputs and chemical outputs (ozone and its precursors) and compare them to the summer average. For most of the summer days, cross-domain normalized gross errors are less than 25% for modeled hourly ozone, and normalized biases are between ±15% for both hourly and peak (1 h and 8 h) ozone. The domain-wide aggregated metrics indicate similar performance between the IOPs and the whole summer with respect to predicted ozone and its precursors. Episode-to-episode differences in ozone predictions are more pronounced at a subregional level. The model performs consistently better in the San Joaquin Valley than other air basins, and episodic ozone predictions there are similar to the summer average. Poorer model performance (normalized peak ozone biases <−15% or >15%) is found in the Sacramento Valley and the Bay Area and is most noticeable in episodes that are subject to the largest uncertainties in meteorological fields (wind directions in the Sacramento Valley and timing and strength of onshore flow in the Bay Area) within the boundary layer.

Journal

Journal of Geophysical Research

Volume

115

Year of Publication

2010

Issue

D9

ISSN

0148-0227

Organization

Research Areas